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Research on the abstract properties of the Navier-Stokes equations in three 
dimensions has cast a new light on the time-asymptotic approximate solutions of 
those equations. Here heuristic arguments, based on the rigorous results of that 
research, are used to show the intimate relationship between the sufficient number 
of degrees of freedom describing fluid flow and the bound on the fractal dimension 
of the Navier-Stokes attractor. In particular it is demonstrated how the conventional 
estimate of the number of degrees of freedom, based on purely physical and 
dimensional arguments, can be obtained from the properties of the Navier-Stokes 
equation. Also the Reynolds-number dependence of the sufficient number of degrees 
of freedom and of the dimension of the attractor in function space is elucidated. 

1. Introduction 
In his review paper, Moffatt (1981) drew attention to the increasing interest that 

mathematicians have shown for fluid-mechanics problems. A t  the same time he 
pointed out the existing regrettable communication gap between those mathemati- 
cians and other research workers in fluid mechanics. The present paper is an attempt 
to fill that gap, at least in part, in an important area, viz the application of numerical 
methods to the solution of Navier-Stokes equations. The ideas presented here are 
not a new theory of turbulence, but they offer possible new insights. In particular 
they offer a synthesis of some past and present concepts in fluid mechanics. 

Recent, rather abstract, research on the asymptotic properties of NavierStokes 
equations should prove valuable to the furtherance of the use of computers as 
experimental tools in the study of the dynamics of fluids. Here we shall try to cast 
those abstract results in a more concrete form. As such they may be more appealing 
to the practitioners of fluid mechanics, and, we hope, more useful to them. In 
particular, we show that, with some precisely defined physical entities, there is an 
intrinsic relationship between the Reynolds number, the number of degrees of 
freedom describing fluid flow, and the fractal dimension of the Navier-Stokes 
equations, i.e. the time-asymptotic behaviour of their solutions. We are convinced 
that, just as a careful, knowledgeable experimentalist would not embark on a course 
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of measurements without proper understanding of the behaviour of his instrument- 
ation, so, ideally, a numerical-simulation expert should not embark on a course of 
complex computations without a full understanding of the critical mathematical 
aspects of the problem at hand. However, as rightly pointed out by Moffatt in his 
review, even without full mathematical rigour one can still make a lot of progress 
based on one’s physical intuition. Nonetheless, complicated nonlinear systems may 
sometimes behave in a counterintuitive manner ; therefore, especially where numerical 
fluid-flow simulations are concerned, one may be misled and arrive at erroneous 
conclusions. A recent example of such a pitfall was the observation that the chaotic 
behaviour of the well-known Lorenz model of Rayleigh-BBnard convection is more 
or less drastically modified when the model is augmented by the addition of 
higher-order modes (Franceschini & Tebaldi 1981 ; Treve & Manley 1982). Thus here 
it is not only the quantitative nature of the approximation that is affected, but 
perhaps more significantly the qualitative nature of the approximation is radically 
changed. 

Motivated by those considerations, we have inquired recently into the limited but 
important question as to the degree of approximation needed to ensure that a 
numerical solution of the Navier-Stokes equations is at  least qualitatively correct. 
By that we mean that if the exact solution is steady, or periodic, or quasiperiodic, 
or aperiodic, so respectively is the qualitatively correct approximation. And 
conversely, when a given approximation is steady, or periodic, or quasiperiodic, or 
aperiodic, under what conditions can one conclude that the exact solution has 
the same property ? Here we discuss heuristically certain important results applicable 
to three-dimensional viscous incompressible flows. The corresponding rigorous 
analysis is presented elsewhere (Constantin et al. 1984a; Constantin, Foias & Temam 
19843), as are the results for the two-dimensional case (Foias et al. 1983; Constantin 
& Foias 1983). 

In  conventional turbulence theory (Landau & Lifshitz 1959) one estimates the 
number N of degrees of freedom of a turbulent 3-dimensional flow as 

where Lo is the typical large lengthscale and L, is the Kolmogorov dissipation length 

L, = ( U 3 / € ) t ,  

with e the energy-dissipation rate per unit mass and u the kinematic viscosity. 
Heretofore such an estimate has been based almost solely on otherwise unsubstantiated 
dimensional and order-of-magnitude arguments. Here we show how, starting with 
the Navier-Stokes equations, one can deduce (1)  in a rigorous way. Moreover, more 
significantly, we will show that (1)  is in fact only a sufficient upper bound on the 
number of degrees of freedom needed to approximate turbulent 3-dimensional flows. 
Loosely speaking, this bound is an estimate of the maximum number of degrees of 
freedom needed for any solution of the Navier-Stokes equations. Of course this bound 
is a large number, leaving open the possibility that some actual flows are representable 
by a smaller number of degrees of freedom. 

As normally invoked, the conventional estimate of N is statistical in nature, and, 
strictly speaking, it is applicable to a large ensemble of flows; however, one expects 
a similar result to be valid in the case of the long-time behaviour of a turbulent fluid 
driven by body forces. In that case the role of the ensemble averages should be played 
by appropriate time averages. We will deduce our results by using such averages. To 
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this end for the sake of notational simplicity, we define for any function F the upper 
bound on the time average of F 

(p> = lim sup - F(t’) dt’ 
t-tm : 6 

- : J: 
and the lower bound on that average 

(F) = lim inf- F(t’) dt’. 
t+m 

We consider the flow of an incompressible viscous fluid contained in a fmite 
three-dimensional region D, with a rigid boundary 352, governed by the Navier-Stokes 
equations. Thus the fluid velocity u(r, t )  is determined by 

au 
-+v*Vv  = -Vp+f+vV%,  ( 3 4  at 

v*u = 0 ,  (3b) 

clan = 0, ( 3 4  

W , O )  = v&), ( 3 4  

where f is the external force per unit mass and p is the pressure divided by density. 
Alternatively, D can be a prism with sides Lo, L, and L2,  the boundary condition 
(3c) being replaced by periodicity conditions and the condition (Temam 1983) 

There are several natural ways in which the intrinsically finite number of degrees 
of freedom of a three-dimensional flow can be made manifest. Here we discuss in turn 
two of them, namely the determining modes and the fractal dimension (sometimes 
called capacity) of the attractors. The concept of determining modes is discussed 
below in greater detail. By attractors, we mean the time-asymptotic limits of the flow. 
Their fractal dimensions are dealt with subsequently. Note that the fractal dimension 
or capacity is that of the attractors as subsets of the function space in which the 
solution of (3)  is represented. It does not bear any transparent relation to the question 
of whether or not the dissipation regions fill the physical space (Frisch, Sulem & 
Nelkin 1978). 

2. Determining modes 

eigenfunctions in D satisfying the Stokes equations 
Let ( wrn)Zml be a complete orthonormal set of three-dimensional vector-valued 

V2w,+Vgm = - A ,  w,, V’W, = 0, 

which, together with the appropriate boundary conditions, determine gm uniquely. 
Here the index m stands for subscripts arranged so that the A, form an increasing 
sequence, 0 < A1 < A, < . . . . Now consider the eigenfunction expansion of u : 

m 

m-i 
~ ( r ,  t )  = Z Cm(0) wm(r), 

where the cm(u), in general functions of time, are the expansion coefficients with 
respect to u. Consider a finite set of modes, cj (u)  w j , j  = 1,2,  . . . , M, of a solution U(T, t )  
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of (3). Let there be any other solution u = u(r, t ) ,  starting from different initial 
conditions. Now let M be so large that, if the differences between the expansion 
coefficients c,(u) and c,(u) vanish for long time, i.e. if 

lim ~c, (u) -c , (u) I  = 0 (i = 1,2 ,  ..., M ) ,  
t-rw 

then in some sense u and u are equal to one another or, more formally, 

lim S, 1 u(r, t )  - u(r, t )  12 = 0. 
t+w 

Then such a set of M modes is said to be determining (Foias et al. 1983). 
From the practical point of view, the importance of determining modes lies in that 

in many respects, such as stability, periodicity, etc. the behaviour of the approxi- 
mation to u(r, t )  consisting only of those modes is the same as that of the true solution. 
For example, if, for a given problem, the exact solution of ( 3 )  is quasi-periodic, then 
an approximate solution consisting of determining modes is also quasi-periodic. 
Conversely, if an approximation limited to determining modes is, say, quasi-periodic, 
then we are assured that so is the exact solution. However, no such assurance obtains 
if the approximation is of lesser order than that based on the determining modes. 

It is necessary to note here that the expansion coefficients c,(v) are not quite equal 
to those resulting from the use of an eigenfunction expansion truncated a t  m = M, 
i.e. the mode coefficients of an Mth-order Galerkin approximation, say c',M)(u) (Treve 
1981). However, for practical purposes this difference may be ignored, because, as 
shown elsewhere, if certain technical criteria are satisfied, then, for M sufficiently large 
all c r ) ( u )  approach c,(u) (Constantin, Foias & Temam 1 9 8 4 ~ ) .  

As is well known, it is not yet certain that regular solutions of (3 )  exist for all 
times. However, following common practice we assume that in some sense most of 
such solutions are regular, and in particular that the vorticity is bounded. We define 
the maximum dissipation rate E as 

8 = v (sup I Vu(r, t) 12) 
r 

(4) 

3 

where 1 m(r, t )  12 = z 1 aut/azj 12. 
i, 1-1 

For the present purposes the Kolmogorov length will be defined by (2) with the above 
value of 8. 

We now demonstrate the validity of (i), or more precisely we show that a sufficient 
number M of the determining modes of u is approximately equal to k, N, where N 
is given by ( 1 ) .  Here and in the sequel k, k,, k,, ... denote dimensionless absolute 
constants, typically of order unity, depending at most on the shape of the flow field, 
but not on its size. 

On taking the difference between the equations (3a )  for u and u,  multiplying the 
result by Cj(u, u )  w j ,  where C,(u, v )  3 c,(u) - c j ( u ) ,  summing over j from M +  1 to 00, 

and integrating over the volume, we obtain 

i d  O0 
W 

-- z [C,(U, u)I2+ v z [C,(U, v)l2 A, 
dt j-M+1 f-M+1 

00 00 

(u-u).Vu. z C,(U, u )  wj+ (V'V) (u-0)-  z C,(U, u )  w, 
5-M+l 

W 

= s, j-M+1 

G k&+ (SUP I vu I) z [C,(U, u)I2, 
r I-M+l 
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M a ,  
6 =  x x C*(u,u)C,(u,u) (w,.Vu*w,+v-Vw,.w,), s, where 

which vanishes as t +  00, because, by hypothesis for 1 < i < M, in that limit 
Ci(u, u)+O. Or, more transparently, 

8-1 j-M+1 

a, d m  
- Z [Cj(u, v)]2+2(~A,+l-sup I Vu I) X [Cj(u, v)]' < Aka, 
dt j-M+1 r 5 - ~ + 1  

whence we easily infer that [c,(u) w,, . . . , c,(u) w,] is a determining set for u, provided 
that 

But it is known that in three dimensions AM+, > k,  A, A& (Morse & Feshbach 1953 ; 
Metivier 1978), so that (5) holds if 

(sup I Vu I) < k,  M b A , .  

Now we relate the lowest eigenvalue A1 to the typical lengthscale of the flow, viz 

r 

A, x l / L &  Thus (5)  is satisfied if 

That is, it suffices that the number of modes N 3 M - k&Lo/Ld)s, or to within a 
constant, we recover the estimate (1). A novel conclusion to be drawn from this result 
is that the conventional estimate (1) is really an upper bound on the number of modes 
needed to describe 3-dimensional turbulent flow. In fact the necessary and sufficient 
number may eventually turn out to be smaller! However, at present it is not at all 
clear that the number of modes needed is as small as that estimated conventionally 
(e.g. Landau & Lifshitz 1959) on the basis of the dissipation length determined by 
the average dissipation rate. 

The derivation leading up to (5 )  justifies the common assumption about the 
physical basis for (1). We see that indeed, when ( 5 )  is satisfied, the lengthscale given 
by AM+, is sufficiently small to ensure that the energy delivered to the higher-order 
modes by shear stress at the rate - I Vu I is effectively damped by molecular viscosity. 

3. Variation equations and dimensions of attractors 
Before addressing the determination of the fractal dimension or capacity of the 

attractors of the Naviedtokes equations, it is useful to indicate how the dimension 
of an attractor may be found for the case of a finite-dimensional system. A natural 
way to determine the dimension of a space in which time-asymptotic trajectories are 
imbedded is to test in some manner the neighbourhood of a given trajectory. In 
particular, such a test may consist of examining how a small volume element evolves 
along that trajectory: for, if we find that with a given assigned spatial dimensionality, 
say D, the small D-volume is shrinking indefinitely, we can oonclude that, for t +  00, 

the trajectories cannot fill a D-dimensional volume. 
To see how this works consider the so-called variation equations associated with 

a given system of 12 differential equations (Para 1965) : 

x = f ( x ) ,  x = {zl, z,, . .., zn}, 
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with bounded solutions. Let F(t) be a matrix with elements af.[x(t)]/axj, with x,(t) 
assumed to be known functions of time. Then the variation equations are 

2 = F(t)z,  2 = {zl, z2, ..., Zn}. (6) 

Clearly (6) is a linearization of X = f ( x )  around x(t). 
Now consider an n-dimensional infinitesimal volume element 

Y =  I Y ~  A YZ A ..* A Ynl 

moving along the trajectory prescribed by x(t ) ,  where yi, (i = 1 ,  2, ..., n) are some 
solutions of (6), and A signifies the outer vector product. Its evolution is evidently 

Therefore if Tr F < 0 the n-volume is shrinking. Moreover, it can be shown then 
that the dimension of the region in which x(t)  resides asymptotically as t+ co is less 
than n. A familiar example of such behaviour is the well-known Lorenz system, which 
is of third order, but whose asymptotic trajectory lies on a complicated set - the 
Lorenz attractor - which is in fact of less than three dimensions (Lanford 1976). Of 
course, less exotic examples are limit cycles (one dimension) and point attractors (zero 
dimension). We now recall that it has been conjectured that the dimension of an 
attractor is intimately related to the so-called Lyapounov characteristic numbers, 
or Lyapounov exponents (Kaplan & Yorke 1979; Russell, Hanson & O t t  1980). This 
useful relationship has now been proved rigorously (Constantin & Foias 1983; 
Constantin et al. 1984b; Babin & Vishik 1983). 

To see heuristically how this comes about, and to motivate the subsequent 
discussion, consider as a concrete example the Lorenz equations, by now a familiar 
model of deterministic chaos : 

x = -ux+uy, 
9 = -ux-y-xz, 
I = -bz+xy+b(r+u), 

where u, r and b are positive constants. Here as compared with the original version 
of the Lorenz system, the variable z of Lorenz has been replaced for convenience by 
z + r + 6. The variation equations for (8) are 

92 = A(u)  42, (9) 

where 42 = (V,,  V,, V,) are three solutions of the linear time-dependent system (9), 
and u = (x, y, z )  is the solution of (8), while 

Evidently Tr A(u)  = -u- 1 - b < 0. Therefore the region occupied by the time- 
asymptotic trajectories of (8) - i.e. the attractor - has a dimension less than three. 

Now in order to see whether the dimension of the attractor of (8) is larger (or 
smaller) than two, we investigate the evolution of a small 2-volume, or a plane surface 
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element made up of say U, and U,, V =  V, A U,, along the solution u of (8). It is 
easily verified that 

d l  = 2[TrA(u)I VI2-(V,A(u)  V)] = 2[TrA(u)-(y,A(u)y)]( V12, (10) 

where y = V/l VI is a unit vector in the direction of V, normal to the plane determined 
by Ul and U,. For future reference we define the trace 

dt 

Tr A(W Q2( ul, V2) = Tr A(u)  - ( Y ,  A@) 71, (11) 

where &,( U,, V,) is the orthogonal projection operator - a projector - onto the plane 
spanned by U, and U, (a 2-dimensional space imbedded in a higher-dimensional, 
3-dimensional space). Of course, not only the size of V changes with time, but so does 
its orientation. Should (1 1) be consistently negative, one can prove that the attractor is 
of dimension less than two. Therefore, in order to proceed we must evaluate Tr A&,. 
Let y = (xo,yo,zo). It follows from (11) that 

Tr A&, = - l - b - a + a x ~ + ~ ~ + b z ~ + x o ( z y o - y z o ) .  (12) 

Let m = max ( l ,b ,a) .  Then 

Tr A&, < - 1 - b - a+ m + xo(yi + zi)t  (y2 + z2)t 

< - l -bba+m++f (x~+y~+z~) t (y2+z2) f  

< -l-b-a+m++(x2+y2+z2)t 

= -1-b-a+m++lu(t) I. 
Using standard methods in (8), it can be shown readily that on the attractor, with 
1 = min (1, a), I u(t) 1 < b(r+a)/2(l(b- l)$. Thus finally there follows 

With the usual parameters for the Lorenz attractor, (b, r ,  a) = (i, 28, lo), we have 

I VI G I Ul(0) A U,(O) I exp (W (13) 

i.e. the surface element V expands at a rate slower than some upper bound, and, in 
fact, may even be shrinking along some solutions. In order to determine whether the 
latter condition does, or does not, prevail, we would have to determine the sign of 
the lower bound for Tr A&,. However, our purpose here is not to study the detailed 
properties of the Lorenz attractor, but rather to clarify the connection between the 
dimension of the attractor and the Lyapounov exponents. For this purpose, as will 
be seen below, (13) is sufficient. Therefore we proceed to introduce those exponents 
in the present context. 

Consider again (6), and take Y = I y1 A y, A . . . A ym I, where yr  are m < n 
solutions of (6). Further, initially let y(0) be an orthonormal set of vectors, i.e. 
initially, to within an appropriate constant depending only on m, Y is the volume of 
an m-dimensional sphere. Then (6) serves to describe the deformation of that sphere 
into an m-dimensional ellipsoid, and its subsequent evolution. A t  any time the 
m-volume of that ellipsoid is proportional to the product of its m semiaxes. Let al(t), 
a,(t), ..., a,(t) denote the time-dependent semiaxes of the ellipsoid. Then 

rt 

J, Tr F,(t’) dt’ = Inw,(t), 
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where um(t) = al(t)a,(t) ... am(t), and Tr Fm(t) denotes the trace of the matrix F(t) 
restricted to the space spanned by the principal axes of the ellipsoid. Now we allow 
t to become so large that it is reasonably certain that u(t) is in the attractor, or very 
close to it. Assume that the limit 

exists, thenp, is the Lyapounov exponent associated with ai(t) (Oseledec 1968). Note 
that in the most general case [lna,(t)]/t may not tend to a well-defined limit. However, 
as long as the a, are bounded (15) is meaningful. It follows then from (14) that as 
t +  CQ, and the m-volume moves along a trajectory in the attractor of a system of 
n differential equations, the time integral of the trace of Fm satisfies 

i t  m 
.J0 Tr Fm(t’) dt‘ - p6. 

1 - 1  

On comparing (14) with (16) we see that we have thus related the time evolution of 
elements of different dimensions in the n-dimensional phase space to the sum of the 
appropriate Lyapounov exponents. It has been shown elsewhere that for a wide class 
of dynamical systems, including differential equations of practical interest, the 
required limits, and hence Lyapounov exponents, exist for most trajectories (Oseledec 
1968). As in the discussion following (7),  when Z g l  pi is consistently negative, one 
can prove that the dimension of the attractor is less than m. 

In order to put a finer upper bound on the dimension of the attractor we recall 
now that there are profound generalizations of the concept of space dimension. In  
the present context two such generalizations are of interest: first is the Hausdorff 
dimension, and second is the fractal dimension whose importance in physical sciences 
was recognized by Mandelbrot (1977). The HausdorE dimension d H ( X )  of an 
attractor is in fact that referred to in the discussion following (7), (9) and (16). It 
can be shown that (Constantin et al. 19843) 

m 

provided CF:l pi < 0. We note that, for various technical reasons, here we have 
introduced the so-called uniform Lyapounov exponents put, defined somewhat differ- 
ently than those in (15). Specifically, they are determined iteratively as 

where Gi(t) = sup wi( t ) ,  with the supremum taken over all trajectories in the attractor. 
Obviously, the best value for m is the last integer for which ZElp t  2 0, because it 
yields the smallest bound on d H ( X ) .  

We are now ready to complete the estimate of the upper bound on the HausdorE 
dimension of the Lorenz attractor. Thus, with the use of (13), m = 2, and n = 3, there 
follows pl+pz+pa = - 1 - b - a  = -?, pl+pz < 16, whence 

d,(Lorenz) < 2+ p1+p2 = 2.54. 
Y+CLl+ruZ 

As is well known, here for most trajectories in the attractor, one of the non-negative 
Lyapounov exponents, say p2, is equal to zero. A more precise estimate of the uniform 
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Lyapounov exponents leads to d,(Lorenz) < 2.409. It is possible that the use of 
numerically obtained time averages of Lorenz trajectories could yield an even lower 
bound on d,, perhaps closer to the probabilistic dimension estimated to be less than 
or equal to 2.05 (Farmer, Ott & Yorke 1983). 

For infinite-dimensional systems, e.g. partial differential equations such as the 
Navier-Stokes equations, it  is more useful to consider the fractal dimension d, (X) .  
It is always larger than the HausdorE dimension, and i t  could even be infinite when 
the HausdorE dimension is finite. Nevertheless, when d, (X)  is finite it serves as an 
upper bound on the HausdorEdimension. Besides, the fractal dimension appeals more 
readily to one’s physical intuition. It is based on the number of small volumes needed 
to fill a region of space (Mandelbrot 1977). More precisely the fractal dimension d,(X) 
of an obiect X is defined as 

ln nX(4 d,(X) = lim SUP- 
E+O In ( l /s)  ’ 

where nx(cz) is the minimum number of balls of radii < 8 needed to fill, or cover, X. 
It is clear that n,(e) depends on the volume of the ‘balls’, or in the present case on 
un(t). Indeed, a laborious analysis (Constantin & Foias 1983; Constantin et al. 19843) 
shows that 

d , ( ~ ) <  max 
1 < 1 < m  

Here again p8 are the uniform Lyapounov exponents, while 

pr = lim [In E‘(t)l, and tL.< = sup a8(t), 
t t+aJ 

with the supremum taken again over all the trajectories in the attractor. For practical 
application the rightmost member of (18) is easiest to evaluate. In  (18) one assumes 
again that ZE;l p8 < 0. 

We now extend these elementary ideas to the attractor of the Navier-Stokes 
equations. 

4. Fractal dimension of the Navier-Stokes attractor 
In  order to apply the results of $3 it suffices, without any loss of generality, to 

restrict oneself to the solenoidal (divergence-free) portion of (3). Then the equation 
of evolution corresponding to (3) is of the form (Temam 1983) 

dv 
-+VAO+B(U,U) dt =f, 

where we have assumed that the force f is a divergence-free vector. Here -A and 
B e ,  q )  are the divergence-free parts of the Laplacian Va and ofp-Vq respectively, and 
satisfy their appropriate boundary conditions. Next we linearize (19) about some 
known solution vo(r, t)  by taking the Frhchet derivative of (19). This leads to a 
variation-like equation for a small departure z from the trajectory v,, ; 

dz 
-++V+B(vo,z)+B(z,~,)  dt = 0. 
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Note that, because of the orthogonality of B@, q )  with respect to q,  a consequence 
of incompressibility, there is no contribution to the trace from B(v,, z ) .  In analogy 
with the considerations of $3, we define Q,( U,, U,, ..., U,) to be the orthogonal 
projector onto the m-dimensional space (imbedded in an infinite-dimensional phase 
(function) space). For notational simplicity we designate the finite, mth-rank 
operators A, = AQ,, and B ,  = BQ,, with the corresponding traces Tr A, and 
Tr B,. Further, we let d, = uA, + B,. Then as a generalization of (10) we have 

dln(1 U, A ... 
dt = - 2 T r d , ( v 0 ) .  

In the special case of orthogonal, solenoidal vectors U,, for any linear operator T, 
we have also 

where ( * ,  * )  signifies the inner product. On utilizing (19) to extend the ideas presented 
in $3 to the case of the NavierStokes equations in two and three dimensions, it is 
possible to prove that there exists a number, No,  such that if m 2 No a small 
m-dimensional volume evolving along the solution of (19) shrinks indefinitely, as 
t+oo (Constantin & Foias 1983; Constantin et al. 19843). The key result is that 
No - N ,  as in (1).  The proof is very technical and elaborate, and it will not be 
reproduced here. However, in order to give the reader some idea of what is involved, 
the two key steps are discussed very briefly below. 

In the first step, let W be any attractor such that for all solutions of (19) as t+ 00 

the enstrophy is bounded from above, i.e. 

Here again the volume w, of the m-dimensional ellipsoid evolving along the solution 
of (19) is 

w, = exp( -Io Tr d,dt’), 

where we have assumed that initially that volume was an m-dimensional unit sphere. 
Now, for any m = 1,2,  ... defme q, as the smallest possible time-averaged value of 
the trace of d,, for all possible projectors Qm : 

t 

q, = inf (inf Tr d,), 
0 Q m  

where v runs over all solutions of (19) with the appropriate boundary condition, and 
such that the initial conditions v(r,  0) are already in the attractor W .  Evidently, q, 
is a bound on the sum of the m largest uniform Lyapounov exponents. Then for q, > 0 
the analogue of (18) in infinite-dimensional space yields for the fractal dimension 

It is necessary to reiterate that this dimension relates to the attractor in the function 
space and not to the real space in which the flow takes place. 
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In the second step, we determine ql and qm, followed by the demonstration that 
d,( W) - N of (1) .  First, let the upper bound on the energy-dissipation rate be given 

€ = u(sup sup I Vu(r,  t )  12) < cc 
V T  

where, as above, u runs over all solutions of (19) which are in W. We define now L, 
by (2) and (24) instead of (2) and (4). 

It can be shown that on using (24) 

. .  

and that 
TrA, > Al+A,+  ...+ A* > k , A , ( l + b +  ...+j$. (26) 

Therefore it follows on substituting (25)-(26) in (22) that for any positive integerj 

q, > k,uAl(l+2i+ ... 

For k,m$ > 2.21211; i t  follows that qm > 0 and 

max -ql < 0.4vh1 k$M. 
1<1<m 

On substituting in (23) we finally obtain, for large N, 

d,( W )  < 4.52N/k!. (27) 

Therefore, apart from a constant of order unity, we find that the bound on the 
dimension of the attractor of the NavieI-Stokes equation is identical with the 
estimate of the number of modes sufficient for the description of the time-asymptotic 
behaviour of the solutions to that equation. 

5. Relation to the Reynolds number 

Reynolds number R is 
In our approach, for the case considered in $2, the natural definition of the 

(28 ) R = (sup I u(r, t )  12)i/uAi,  

R = (sup sup I u(r, t )  12)i/uAi,  

r 

while, for the case considered in $4, 

(29) 

where u runs over all solutions of (19) with the appropriate boundary conditions and 
initial conditions already in the attractor W. 

o r  

Under these conditions it can be shown that 
(i) the number of the determining modes of u is less than k, Rs, where R is defined 

(ii) the fractal dimension of the attractor W of u is less than k4 R3, where R is defined 
by (28); 

by (29). 
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As an example, referring to (ii), on using methods similar to  those leading to (25) 
and (26), i t  is possible to  show from (22) and (29) that  

qm > ?ph,m(3k,m~-R2). 

From this i t  follows in turn that the use of arguments leading up to (27) results in 

d,(W) - R3. (30) 

This is a somewhat pessimistic estimate, since it is much higher than the conventionally 
accepted N -H (Landau & Lifshitz 1959). However, i t  must be noted that, in 
arriving at (30), we have made no use of any a priori knowledge of the spectrum of 
the flow. The more conventional estimate is based on the assumption that the 
spectrum of the energy density in the flow is the Kolmogorov spectrum. Indeed if 
we put in formal terms the arguments adduced by Landau & Lifshitz (1959), we find 
that for a more general power-law spectrum bounded by wavenumbers K~ 4 K ~ ,  the 
energy density is given by 

e = K: I u 1, dl' = const (sv$ j1:d (2)n d (t) x const 

where the averaging volume V is determined by the outer length - 1 / ~ ~ .  On defining 
the Reynolds number in terms of the mean-square value of the velocity of the flow, 
say R, = 4 I u I/v, i t  follows immediately that 

which for n = yields the usual result. This raises then a question of the validity 
of numerous simulations of fluid flows a t  relatively low Reynolds numbers, so low 
in fact that  the Kolmogorov spectrum is inapplicable, yet for which the number of 
degrees of freedom is often predicated on the rule. 

6. Concluding remarks 
I n  this paper we have established the relationship between the existing conventional 

estimates of the degrees of freedom in Navier-Stokes flow, the rigorous bounds on 
the number of modes needed to  represent such flow in numerical simulations, and 
the fractal dimension of the Navier-Stokes attractor. We have been able then to relate 
these bounds to an appropriately defined Reynolds number. We have remarked on 
the conventional measure of the number of degrees of freedom, &, as being a result 
of a priori knowledge of the spectrum of homogeneous isotropic turbulence. Obviously 
this conventional estimate is inapplicable at low and medium Reynolds numbers. A 
more conservative estimate, independent of the knowledge of the spectrum, as 
suggested here, varies as R3. 

An overriding conclusion emerging from the work reported here is that in every 
sense the Navier-Stokes equation is a closed system. That is, the system is determined 
by a finite but large number of degrees of freedom. Thus, were one to  carry a sufficient 
number of terms in an approximate solution, the terms beyond become irrelevant. 
The above conclusion suggests the question as to whether in the statistical description 
of the solutions to the Navier-Stokes equations i t  is also required to retain a corre- 
spondingly large number of degrees of freedom. Further, are conventional low-order 
closure attempts potentially as misleading as low-order Galerkin approximations 
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(cf. the Lorenz system)? We do not have as yet unequivocal answers to these 
questions, but given the lack of universality of low-order closures carried out to date, 
we rather believe that the answer is in the affirmative, namely, that the number is 
finite but large. However, as yet we cannot prove this conjecture. 

The key to obtaining the results presented in this paper lies in the ability to 
estimate the values of certain integrals, i.e. certain norms. The limitation on those 
results, there being only sufficient bounds, but not necessary and sufficient, rests on 
the limits to our present ability to make such estimates. Even so we have been able 
to establish useful connections between some old and new concepts in fluid mechanics. 
As sharper bounds on norms are obtained in the field of nonlinear functional analysis, 
theoretical and numerical fluid mechanics will inevitably benefit further. 
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Note added in proof. The estimate of the fractal dimension of the attractor given here 
can be improved by means of a remarkable inequality due to Lieb and Thirring. That 
inequality allows us to replace the averaging actually used in the definition of E ,  (24), 
by another one; it yields a larger value for L,, and thus decreases the bound on the 
fractal dimension of the attractor (Constantin et al. 19843; Lieb 1984). However, the 
significance of this improved averaging is not intuitively obvious on purely physical 
grounds. 




